Skip to content

Position-specific isotope effects during alkaline hydrolysis of 2,4-dinitroanisole resolved by compound-specific isotope analysis, 13C NMR, and density-functional theory

APTIM Authors/Contributors


Compound-specific isotope analysis (CSIA), position-specific isotope analysis (PSIA), and computational modeling (e.g., quantum mechanical models; reactive-transport models) are increasingly being used to monitor and predict biotic and abiotic transformations of organic contaminants in the field. However, identifying the isotope effect(s) associated with a specific transformation remains challenging in many cases. Here, we describe and interpret the position-specific isotope effects of C and N associated with a SN2Ar reaction mechanism by a combination of CSIA and PSIA using quantitative 13C nuclear magnetic resonance spectrometry, and density-functional theory, using 2,4-dinitroanisole (DNAN) as a model compound. The position-specific 13C enrichment factor of O-C1 bond at the methoxy group attachment site (εC1) was found to be approximately -41‰, a diagnostic value for transformation of DNAN to its reaction products 2,4-dinitrophenol and methanol. Theoretical kinetic isotope effects calculated for DNAN isotopologues agreed well with the position-specific isotope effects measured by CSIA and PSIA. This combination of measurements and theoretical predictions demonstrates a useful tool for evaluating degradation efficiencies and/or mechanisms of organic contaminants and may promote new and improved applications of isotope analysis in laboratory and field investigations.

Read more.

APTIM. In Pursuit of Better.